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ON A METHOD OF MINIMIZING THE MAXIMAL ACCUMULATED ERROR
G. M, Rozenblat

1. Let us consider an automatic control system described
by the differential equation
Llgi=F), 0<t<T, (1)
y(0) =y(0)= ... =y=(0)=0,

where
Liy(l= L[y O] +ec@)y (),

" n—1
P @ () . gy l0).
tn dtn—l ] ]

L= y

We shall assume that thé function ()| at ¢€[0, T]| has %) con-
tinuous derivatives (=0, L3-i.n_-wd and

max | a, ({}| = a, “0\<£<T, Oghkgn—1; \

The quantity c(t) belongs to the class H of piecewise continuous
functions and |c(|<al0<E<LY . The function c¢(t) has the physi-
cal meaning of a varilsble amplificatlion factor {or wvariable
rigidity in the case of mass oscillatlons on a spring). The
perturbation f(t) belongs to the class F of piecewise continuous
functions and |j(f)|<fo, 0=¢=tT/. It is necessary to determine the

function ¢®{{)H , for which the following is satisfied

A= min mas |y (7, [(), c(tnlf'\ (2)

el

)

Here y[T, £(t), c(t)] is the solution of (1) at the moment of
. gy

time T for the selected functions c¢(t) and f£(t). THis problem
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was formulated in [1] and [2]. These studies give the algorithm
for the successive minimization of the maximum accumulated error.
The sufficient conditions are given, for which the algorithm
leads to a definition of A& in (2). An estimate is made of the
number of conversions for the function ¢®(t) and the number of

steps necessary to obtaln A.

This article describes another simpler algorithm for
minimizing the maximum accumulated error. A detailed study is /15

made of the oscillatory system of the second order

. dzs
(L= L +a), |

for which whenTY?ﬂ(b+ﬁJ_% it is shown that A is reached for
the funetion ¢°(t), which differs from a constant (for the
mechanical interpretation, this means that the spring must have
a rigidity which is variable in time). In one particular case,
it is shown that this algerithm leads to a definition ol the
global minimum. An example is given of a system for which the

algorithm was realized on a computer.

2. Let us desgcribe a method for the successive minimiza-
tion of the maximum accumulated error. Let us assume that the

function ci(t) is determined on the iEE'step. The ifteraticn .

process consists of establishing ewi(f) , according to the value of|

ci(t) obtained, which gives the minimized maximum error. Let
us introduce the notation: Gi(t) = Gi(t, T) — the Cauchy

function of the equation Ly(y)-tei(t)y=0T:(D) =losgnG:(8); 0:(t) =]

==\ |ee(f) —cosgn{ G; (1) yi (D1}; 0KITT) | where yi(t} is the solution of
(1) when c()=c:{{), [(H=F:()] . We should note that writing the
solution of (1) when c{t)=c:(f)) in the form

S
y(T) = [ G () ()t
4



leads to the fact that -qgg“AT)U is achieved for the function
F) =f:(t), 0<t<T/ . Let us assumé that B is any upper boundary of
the function |G, I)H when [0, z],J 3,‘:5;'{0_,_?"], ¢i(f)ef| — for example
(see [3]}):

B=exp[TVTF@T cfl,

D;= [0:)-1G, ()i () aty | &, (1)t
0

T
a‘i —.: .D‘/"']:.B2 J] e!(t)' Iyt (t)]dt‘
0y

Let us determine the set mi(A):]
™,

T
mi (M) = [t:0€ [0, TI, |G,y < B4 [ 0,6 ), x;;,o.\
.. fi-

Let us introduce the number ﬁﬁ as follows: 1if 0<ﬁls§lﬁBW7q4_
then ﬁq is the root of the equation '

mes [sr; (A)] = D,/ 168%; \ : (3)

If D:>16BTfJ , then i is any positive number for which () =[0, 7).
It may be shown that when O0<ID,=0I68°Tf|, Equation (3) has a

.unigue non-zero solution, and B:=0 only when 'Di=0 ., We should

note that if B{ is a discontinuity point of the function meslm(1)]|
and _mis[ﬁiﬁiﬁmpai/mm@ , but fnesﬁfzg(E:O)]<D\i/‘10132;0; , We then
assume

mes [1n; (B;)] = D/ 165/, \

The equation ¢wi(l) gives the minimized maximum acecumulated

error and is determined by the formula

L) = cop () —c; () = v0; () sgn | G ) g ()], 0<IT, (1)

where ?f=mhﬂahlh,ﬂ . Here the numbers ﬂ& and ﬂi are the same

as were determined above,.



3. In this section, we shall determine the minimization 76

of the maximum accumulated error, if ¢in(f)] 1is determined by
Formula (4).

We shall first prove that when IhgfﬁgT| the following
ineguality holds
T
|G lg) — Grn o) | < B {14 (1) . (5)
; .

Actually, we shall set
h (L') =@, ({,, l)_——-_GH_] (lﬂ, £}, 0 Qfo < IT,. ‘

It follows from the definition of the Cauchy function Gi(j)

and Gi_ l(t) that h(t) satisfies the equation

Lilk(O) - ¢ (O h€) = e ) =GO Gip (o, O |

In addition, taking the fact into account that the initial

conditions for the function h(t) are zero, we obtain

h(T):jT'Gi(t, TV, () G (£, t)dt. \

Ly

Inequality (5) thus follows, We obtain the following from (5]
and the definition of the set md?di

Filt)—fipr () = 0 [For 1€ [0, TNum, (). (6)
Let us write the scluticn yi(tl as follows
T ’ T )
4:(T) = g (T) + j‘li ()G (&) g Oyt -1+ | Gega (1) [fi (1) — fipr () dt -
u il
’ (7)

LGRS GG PAGE

Taking (4), (5), and (6) into acecount, we obtain



r r
JLOG @@=y, |06, () at,

0 ]

U Gept (61 () — fima (8)] df’ <, g | Gigr (1) | tt <
i

(€ (v,)
'I; T
< 2f0232715 0, (t) dt mes [m, (B,)] < "Ts 0, (£)- |G, (1) y: (1) e,
)] .0

/
[

A T r
H [Giya (1) — G, (]2, (t)y;(t)dtl gBﬂj i’zi(t)_| d:S ity g, ()] dt <
a

5 4]
T T T
<y (0, ate, (0, 0)- 1, 0) | at RO PAOIED
i b S

~
-3
—~

It follows from these determinations that

|

T r
[ Gesr O ) — s ] @t > — L {0,916y 5 (1)t

0

T r
(160 — 6, 01609 (0 dt > — 2 {0,0)- 16, 1)y, () ot

0 0

Substituting these relationships in (7), we obtain

B . )
GRS AOES SLIORAGPACIED
b
It thus follows that a necessary condition for the optimality
of controlling ci(t) is the equation ﬂdﬂ::0,0kgtsgﬁ , or

¢ 1) = ¢y sgn1Ge(t)-4: (1] | @)
for almost all {=]0, ﬂh
For an unequivocal interpretation of (8), it must be shown

that the set of zeros of the function Gi(f)y;(!)] has the

dimension of =zero.



In the same way, this set is finite. Actually, for the

function Gi(t) this was proven according to a method proposed

in [4]. It may then be found in a similar manner that the set

of zeros of the function intl is finite.

4, Let us rconsider the problem for the operator.
d? i :
= — i
L= lk+o)l)

whererkéﬁﬁnﬁfk;:%;>q . The following three cases are studied

here:

-

Let us examine each case separately.

a) It follows from the Sturm theorem regarding the
number of zeros of the solution for the equation L{y) = 0
(see [3]) that Go(t) does not have zeros in the (0, T) interval
for any c(t)eH ., Taking the fact into account that in this
case
Yoty =\ fy | Golr, i)dtj -

8
we find that yO(t) does not have zeros either in (0, T). Based

on (8), we conclude that the constant Cy is a single optimal

control in this case.



b) In this case c({)=a=const (0={=T, —cuga.gcu)l is not
optimal for any a. Actually, we shall consider one iteration
of the algorithm in Section 2. For the first step, let us select

e (f)=a=const, O<ET \
Then,
1 1
Gty =G, (t, T)=(k+a) * skt a)® (T—1) \ (9)
Let us assume t; is the first positive zero of the function 78_
G () Then |
e

y1@)==hf(k—ka)ﬂﬁgnGIU)Lll5—cosU(k¢-af;n, Oﬁth;Q)N (10)

We find from {(9) that
<k a)ig_\
and from {10), conseguently,
Y1) # 0 \ for 0<t< tl.\

Thus, there is a £#,>/,) such that

yl(f)‘Gl(t)<0 \ for <t l‘.z.\

Thus, 1f 0<a<icd , we take [(1)#0  Ffor (4 L) ; if cosSa<<0/
then 4L(#)=0 for [0, 4] . Then the new control (! will be
different from the constant a for ¢, &) , because for [0, 4]
the maximum accumulated error Jw(Tn is realized which is less
than (T),r

e) Let us assume G(t, T) is the Cauchy function for the

equation

Pkt etly=0. | (11)



where'p(ﬁ) is the solution of the equation (11) under the condi-
tions p(T) = 0, p(T) = 1. It is known (see [3]) that O T)=—p())
0<¥<C7) . Then Condition (8) has the form

¢ () = —cysgn [p° (1) - 5° ()], 0t ST, | (12)
Since
T 2>a(k+c) * ,‘
p°(t) has at least one zero for (0, T). It follows from

1
<2 (;e+c;,>)

and|the Shturm theorem that p°®(t) has only one zero. Let us
assume p°(a)=0 ; then

P >0 | for 0<ti<a p"(t)<0if01“ “<f‘<7-'_:\

The maximizing perturbation is: 7 ()<0| when 0<t<Cal
f°(t)>0} for u<t\<ﬁ . Therefore, (f)<0} for 0T e
However,

-

()= Fy (1Go(t, T)lat>0. \

Thus, y®(t) has at least one zero for (0, T). Utilizing the
inequality

!

T k+c) 2
we find that y°(t) has only one zero. Let us set y°(f) =0l
We thus find from (12) that the optimal control has thél
form shown in the figure.
c"(fJ '

F—“_T
| Let us now prove the

|
| ' . R
\\\\Q L////i uniqueness of this control, i.e.,
L - |

‘::DH,//// the sufficiency of the equation
gir— l«f; (12).

We shall assume the
| 1
[
. -/

=]




existence of the functions /), m(/) and (| which satisfy

the condition (12) and differ from p'{/), () , and (0

Let us assume W(P)=0, p()=0 . Usling the Shturm theorom, we

find either [w, fi]<| or <p, ﬁ]; . Let us assume that [o, Bil<e, ﬁ]-\ /79
Then

) > ), hOH<PW, 0<t<T. \

We have
.ifll + {4 (f))y, = f1(6),
&+ (@) y° =)

Subtracting the first equation from the second, we obfain

S — ) H e O} =) = (PO—EO) @) — W) |

Integrating the latter equation over the segment [0, ﬁxﬁ
7
FO—5n0) = G, [P —HE) + () — @) () dv =

0
t
= 5 Gy (T, £)[{f° (v) = f1 (x)) - (e, () — €° (7)) g, ()] .

When ¢=8) , we obtain

P —uiB) = jco (v, B1) (2], + 2oy, (1)} dr, \ (13}

gsince f°(1-')|mf1(“€). (1) = ¢4 (); algtgﬁl.\

The function ifl("ﬁ)\ when m'<‘1\<oc1\ has the form

| . _N
5@ = —(olle+ e Il —cos(x(e+¢) *). |

Thus, since k>¢) , we obtain

O <Hk+e) S hofege |



Thus,
2fy -1 2653, (£) >0 \ for a<t<a, |

Taking the fact into aécount that when E?%@ﬁﬂ%f,
t _S

T<am(kpg) F <alh—c) }f
will hold, we obtain Gu(t, p) >0, a<<t<<uj. Consequently, the
integral in (13) is positive; therefore, ¥ (B)—m(B)=y" ()} =0l
The latter inequality contradicts the assumption o<Ta<<p<P .
The case m<la-I[<f\may be examined in a similar manner. Thus,
we obtain the equation ,e=m, p=f{ . In case c) Equation (8)
is necessary and sufficient for the optimality of the control
¢®°(t) in the sense of the minimum of the maximum accumulated

errer.

5. The numerical realization of the algorithm was performed
on a "Minsk-22" computer for a system of the second order like
(11) with the following values of the parameters T=ﬁ:ﬁJ4;k=3;w:4M

The results obtained are given below for the six iterations:
1) (7)), = 1.0 (constant rigidity of the spring); 2)

C4aMi= 0.91 (variable rigidity); 3)4(T)=0808:4) 4(T)=09069227, 5) ys(7) =
0,9037; 6) yo(T) =0,9019117
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